$⇔ |\sqrt[]{x}-2|≤\sqrt[]{2}$
$⇔\sqrt[]{x}-2≤\sqrt[]{2}(1)$ hoặc $2-\sqrt[]{x}≤\sqrt[]{2}(2)$
$(1)⇔\sqrt[]{x}≤\sqrt[]{2}+2⇔x≤(\sqrt[]{2}+2)^2$
$(2)⇔-\sqrt[]{x}≤\sqrt[]{2}-2⇔\sqrt[]{x}≥2-\sqrt[]{2}⇔x≥(2-\sqrt[]{2})^2$
Vậy $0≤x≤(\sqrt[]{2}+2)^2$ hoặc $x≥(2-\sqrt[]{2})^2$