Giải thích các bước giải:
a.Ta có $M\in$ trung trực của $AC$
$\to MA=MC$
$\to \widehat{MAC}=\widehat{ACM}=\widehat{ACB}=\widehat{ABC}$
$\to \widehat{BAC}=180^o-2\widehat{ACB}=180^o-2\widehat{ACM}=\widehat{AMC}$
b.Ta có:
$AN=BM$
$\widehat{NAC}=\widehat{ACM}+\widehat{MAC}=\widehat{ACB}+\widehat{MAC}=\widehat{ACB}+\widehat{BAC}=\widehat{AMB}$
$AB=AC$
$\to\Delta ABM=\Delta ACN(c.g.c)$