Cho tam giác \(ABC\) có ba góc nhọn và \(\widehat {A\;} = {45^0}.\) Gọi \(D,\;E\) lần lượt là hình chiếu vuông góc của \(B,\;C\) lên \(AC,\;AB;\;H\) là giao điểm của \(BD\) và \(CE.\)
1) Chứng minh tứ giác \(BEDC\) nội tiếp.
2) Chứng minh \(DE.AB = BC.AD\) và tính tỉ số \(\frac{{ED}}{{BC}}.\)
3) Chứng minh \(HE + HD = BE + CD.\)
4) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Chứng minh \(AI \bot DE.\)
A.
B.
C.
D.

Các câu hỏi liên quan