Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại các điểm D, E, F. Gọi K là hình chiếu vuông góc của B trên đường thẳng DE, M là trung điểm của đoạn thẳng DF. 1) Chứng minh rằng hai tam giác BKM và DEF đồng dạng. 2) Gọi L là hình chiếu vuông góc của C trên đường thẳng DF, N là trung điểm của đoạn thẳng DE. Chứng minh rằng hai đường thẳng MK và NL song song. 3) Gọi J, X lần lượt là trung điểm của các đoạn thẳng KL, ID. Chứng minh rằng đường thẳng JX vuông góc với đường thẳng EF. Cảm ơn mọi người rất nhiêu

Các câu hỏi liên quan