Đáp án: A
Giải thích các bước giải:
Do G là trọng tâm:
$\vec{GA}+\vec{GB}+\vec{GC}=\vec{0}$
$\Leftrightarrow -\vec{GA}-\vec{GB}-\vec{GC}=\vec{0}$
$\Leftrightarrow \vec{AG}+\vec{BG}+\vec{CG}=\vec{0}$
Do đó C sai vì vế phải chỉ ghi $0$
A đúng vì $\vec{MB}+\vec{MC}=2\vec{MI}$. Do I là trung điểm BC nên I là tâm hình bình hành chứa 2 cạnh MB MC