Cho tam giác ABC. Xét các điểm M thuộc BC, N thuộc CA và P thuộc AB sao cho tứ giác APMN là một hình bình hành. Gọi O là giao điểm của các đường thẳng BN và CP. Xác định vị trí hình học của điểm M trên cạnh BC sao cho góc PMO= góc OMP
O A P B N C D M
Trong mặt phẳng cho trước hai điểm A, B và k là một số thực dương khác 1 cho trước. Tìm tập hợp tất cả các điểm M (của mặt phẳng) sao cho \(\frac{MA}{MB}=k\)
\(lim\frac{\sqrt[5]{x+1}-1}{x}\left(x->0\right)\)
tìm lim(n2+n+1)
Cho hình bình hành ABCD có hai đỉnh A,B cố định, còn đỉnh C chạy trên một đường tròn (O;R). Tìm quỹ tích đỉnh D khi C thay đổi .
Cho tứ diện đều ABCD có các cạnh bằng a. Gọi M là trung điểm cạnh AB. Xác định vị trí của điểm N trên đường thẳng AC sao cho \(DN\perp CM\). Khi đó, tính khoảng cách giữa hai đường thẳng CM và DN
Cho đường tròn (O) đường kính AB cố định . Một đường kính MN thay đổi . Các đường thẳng AM và AN cắt các tiếp tuyến tại B lần lượt là P,Q . Tìm quỹ tích trực tâm các tam giác MPQ và NPQ ?
Hai thôn nằm ở hai vị trí A,B cách nhau một con sông (Xem hai bờ sông là hai đường thẳng song song ) . Người ta dự kién xây một cây cầu bắc qua sông (MN) và làm hai đoạn thẳng AM và BN .Tìm vị trí M,N sao cho AM+BN là ngắn nhất .
Cho hình chữ nhật ABCD . Trên tia đối của tia AB lấy điểm P , trên tia đối của tia CD lấy điểm Q . Hãy xác định điểm M trên BC và điểm N trên AD sao cho MN//CD và PN+QM nhỏ nhất .
Giải phương trình :
\(\frac{\cos^2x-\sin^22x}{4\cos^2x}=\sin\left(x+\frac{\pi}{6}\right)\sin\left(x-\frac{\pi}{6}\right)\)
A = 1 + 2016 + 2016^2 + … + 2016^2016;
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến