a) Xét tứ giác AMHN có:
∠AMH = 90o (MH ⊥ AB)
∠ANH = 90o (NH ⊥ AC)
=> ∠AMH + ∠ANH = 180o
=> Tứ giác AMHN là tứ giác nội tiếp
b) Ta có:
ΔAMH vuông tại M: ∠AHM + ∠MAH = 90o
ΔABH vuông tại H: ∠ABC + ∠MAH = 90o
=> ∠AHM = ∠ABC
Do tứ giác AMHN là tứ giác nội tiếp nên ∠AHM = ∠ANM (2 góc nội tiếp cùng chắn cung AM)
=> ∠ABC = ∠ANM
c) Kẻ đường kính AD của (O), Gọi I là giao điểm của AD và MN
ΔANH vuông tại N: ∠AHN + ∠NAH = 90o
ΔACH vuông tại H: ∠AHN + ∠ACB = 90o
=> ∠NAH = ∠ACB
Ta lại có: ∠ACB = ∠ADB (2 góc nội tiếp cùng chắn cung AB)
=> ∠NAH = ∠ADB
Mặt khác: tứ giác AMHN là tứ giác nội tiếp nên ∠AMN = ∠AHN (2 góc nội tiếp cùng chắn cung AN)
=> ∠AMN = ∠ADB
Xét ΔAMI và ΔABD có:
∠BAD là góc chung
∠AMN = ∠ADB
=> ΔAMI ∼ ΔADB
=> ∠ AIM = ∠ABD
Mà ∠ABD = 90o (góc nội tiếp chắn nửa đường tròn)
=> ∠AIM = 90o
Hay OA ⊥ MN