Đáp án:
a)
Ta có:
$\widehat{DAC}=\widehat{BAC}+\widehat{DAB}$
$\widehat{BAE}=\widehat{BAC}+\widehat{CAE}$
mả $\widehat{DAB}=\widehat{CAE}=60^0$
$\Rightarrow \widehat{DAC}=\widehat{BAE}$
Xét $\triangle DAC$ và $\triangle BAE$ có:
$AD=AB$ (do $\triangle ABD$ đều-gt)
$AC=AE$ (do $\triangle ACE$ đều -gt)
$\widehat{DAC}=\widehat{BAE}$ (cmt)
$\Rightarrow \triangle DAC=\triangle BAE$ (c.g.c)
b)
Ta có:
$\widehat{DBC}=\widehat{ABC}+\widehat{DBA}$
$\widehat{ABF}=\widehat{ABC}+\widehat{CBF}$
mả $\widehat{DBA}=\widehat{CBF}=60^0$
$\Rightarrow \widehat{DBC}=\widehat{ABF}$
Xét $\triangle DBC$ và $\triangle ABF$ có:
$BD=AB$ (do $\triangle ABD$ đều-gt)
$BC=BF$ (do $\triangle BCF$ đều -gt)
$\widehat{DBC}=\widehat{ABF}$ (cmt)
$\Rightarrow \triangle DBC=\triangle ABF$ (c.g.c)
$\Rightarrow DC=AF$
mà $DC=BE$ (do $\triangle DAC=\triangle BAE$ -cmt)
$\Rightarrow DC=BE=AF$
c)
Do $\triangle DAC=\triangle BAE$ (cmt)
$\Rightarrow \widehat{ACD}=\widehat{AEB}$ (hai góc tương ứng)
Ta có $\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0$
$\Rightarrow \widehat{AEB}+\widehat{OEC}+\widehat{ACE}=120^0$
mà $\widehat{ACD}=\widehat{AEB}$ (cmt)
$\Rightarrow \widehat{ACD} +\widehat{OEC}+\widehat{ACE}=120^0$
$\Rightarrow \widehat{OEC}+\widehat{OCE}=120^0$
$\Rightarrow \widehat{COE}=60^0$
d)
Do $\triangle DAC=\triangle BAE$ (cmt)
$\Rightarrow \widehat{ADC}=\widehat{ABE}$ (hai góc tương ứng)
Do $\triangle DBC=\triangle ABF$ (cmt)
$\Rightarrow \widehat{BDC}=\widehat{BAF}$ (hai góc tương ứng)
Ta có $\widehat{AOB}=180^0-\widehat{BAF}-\widehat{ABE}$
mà $\widehat{ADC}=\widehat{ABE}$ (cmt) và $ \widehat{BDC}=\widehat{BAF}$ (cmt)
$\Rightarrow \widehat{AOB}=180^0-\widehat{BDC}-\widehat{ADC}$
$\Rightarrow \widehat{AOB}=180^0-\widehat{ADB}$
$\Rightarrow \widehat{AOB}=180^0-60^0=120^0$