a, Xét $ΔABC(A=90^o)$
$⇒BC^2=AB^2+AC^2$
$⇒BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5(cm)$
$AB^2=BH.BC$
$⇒BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8(cm)$
$⇒HC=BC-BH=5-1,8=3,2(cm)$
$AH^2=BH.HC$
$⇒AH=\sqrt{BH.HC}=\sqrt{1,8.3,2}=2,4(cm)$
Ta có $AD$ là phân giác $A$
$⇒\dfrac{AB}{AC}=\dfrac{BD}{DC}$
$⇒\dfrac{AB}{AC}=\dfrac{BC-DC}{DC}$
$⇒\dfrac{3}{4}=\dfrac{5-DC}{DC}$
Giải pt ta được
$DC=\dfrac{20}{7}(cm)$
$⇒HD=HC-DC=3,2-\dfrac{20}{7}=\dfrac{12}{35}(cm)$