Cho tam giác ABC vuông tại A, đường tròn \(\left( O \right)\)đường kính AC cắt BC tại K, vẽ dây cung AD của \(\left( O \right)\) vuông góc với BO tại H.
1) Chứng minh bốn điểm B, K, H, A cùng thuộc một đường tròn.
2) Chứng minh: BD là tiếp tuyến của đường tròn \(\left( O \right)\)
3) Chứng minh \(BH.BO = BK.BC\).
4) Từ \(\left( O \right)\)vẽ đường thẳng song song với AD cắt tia BA tại E, từ B vẽ đường thẳng vuông góc với EC tại F, BF cắt AO tại M. Chứng minh: \(MA = MO\)
A.
B.
C.
D.

Các câu hỏi liên quan