Cho tích phân \(I = \int\limits_0^{{\pi  \over 4}} {\left( {x - 1} \right)\sin 2xdx} \). Tìm đẳng thức đúng?
A.\(I =  - \left( {x - 1} \right)\cos 2x|_0^{{\pi  \over 4}} + \int\limits_0^{{\pi  \over 4}} {\cos 2xdx} \)
B.\(I =  - \left( {x - 1} \right)\cos 2x|_0^{{\pi  \over 4}} - \int\limits_0^{{\pi  \over 4}} {\cos 2xdx} \)
C.\(I =  - {1 \over 2}\left( {x - 1} \right)\cos 2x|_0^{{\pi  \over 4}} + {1 \over 2}\int\limits_0^{{\pi  \over 4}} {\cos 2xdx} \)
D.\(I =  - {1 \over 2}\left( {x - 1} \right)\cos 2x|_0^{{\pi  \over 4}} - {1 \over 2}\int\limits_0^{{\pi  \over 4}} {\cos 2xdx} \)

Các câu hỏi liên quan