Cho tứ diện $\displaystyle ABCD$ có trọng tâm$\displaystyle G$ . Chọn khẳng định đúng?
A. $\displaystyle A{{B}^{2}}+A{{C}^{2}}+A{{D}^{2}}+B{{C}^{2}}+B{{D}^{2}}+C{{D}^{2}}=3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+G{{D}^{2}} \right)$.
B. $\displaystyle A{{B}^{2}}+A{{C}^{2}}+A{{D}^{2}}+B{{C}^{2}}+B{{D}^{2}}+C{{D}^{2}}=4\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+G{{D}^{2}} \right)$.
C. $\displaystyle A{{B}^{2}}+A{{C}^{2}}+A{{D}^{2}}+B{{C}^{2}}+B{{D}^{2}}+C{{D}^{2}}=6\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+G{{D}^{2}} \right)$.
D. $\displaystyle A{{B}^{2}}+A{{C}^{2}}+A{{D}^{2}}+B{{C}^{2}}+B{{D}^{2}}+C{{D}^{2}}=2\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+G{{D}^{2}} \right)$.