Áp dụng BĐT CauChy ta có :
`P =\sqrt{xyz}(1/(\sqrt{(x + y)(y + z)}) + 1/(\sqrt{(x + z)(y + z)}) + 1/(\sqrt{(x + y)(x + z)}))`
`<=> P = 1/2 \sqrt{xyz}(2/(\sqrt{(x + y)(y + z)}) + 2/(\sqrt{(x + z)(y + z)}) + 2/(\sqrt{(x + y)(x + z)})) `
`<= 1/2 \sqrt{xyz}(1/(x + y) + 1/(y + z) + 1/(x + z) + 1/(y + z) + 1/(x + y) + 1/(x + z)) `
`= \sqrt{xyz}(1/(x + y) + 1/(y + z) + 1/(z + x))`
`<= \sqrt{xyz}(1/(2\sqrt{xy}) + 1/(2\sqrt{yz}) + 1/(2\sqrt{zx}) )`
`= \sqrt{xyz}/(2\sqrt{xy}) + \sqrt{xyz}/(2\sqrt{yz}) + \sqrt{xyz}/(2\sqrt{zx}) `
`= (\sqrt{x} + \sqrt{y} + \sqrt{z})/2`
`= 1/2 (sqrt{x} + sqrt{y} + sqrt{z} =1 ) `
`Dấu "=" <=> x = y = z = 1/9`
Vậy Max `P =1/2`