Giải thích các bước giải:
Ta có :
$f(0)=\lim_{x\to 0} \dfrac{-2+\sqrt[3]{2x+8} }{-2+\sqrt{3x+4} }$
$=\lim_{x\to 0} \dfrac{\dfrac{2x+8-2^3}{\sqrt[3]{2x+8}^2+2\sqrt[3]{2x+8}+2^2} }{\dfrac{3x+4-2^2}{2+\sqrt[]{3x+4} }}$
$=\lim_{x\to 0} \dfrac{\dfrac{2x}{\sqrt[3]{2.0+8}^2+2\sqrt[3]{2.0+8}+2^2} }{\dfrac{3x}{2+\sqrt[]{3.0+4} }}$
$= \dfrac{\dfrac{2}{\sqrt[3]{2.0+8}^2+2\sqrt[3]{2.0+8}+2^2} }{\dfrac{3}{2+\sqrt[]{3.0+4} }}$
$=\dfrac 29$