Đáp án:
Giải thích các bước giải:
$1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+...+\dfrac{1}{100^{2}}$
$ $
Ta có: $1=1$ ; $\dfrac{1}{2^{2}}<\dfrac{1}{1.2}$ ; $\dfrac{1}{3^{2}}<\dfrac{1}{2.3}$ ;...; $\dfrac{1}{100^{2}}<\dfrac{1}{99.100}$
$ $
$⇒1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+...+\dfrac{1}{100^{2}}<1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}$
$ $
$⇒1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+...+\dfrac{1}{100^{2}}<1+1-\dfrac{1}{100}$
$ $
$⇒1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+...+\dfrac{1}{100^{2}}<2-\dfrac{1}{100}<2$
$ $
$⇒1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+...+\dfrac{1}{100^{2}}<2$