Giải thích các bước giải:
Ta có:
$1-\dfrac12+\dfrac13-\dfrac14+...+\dfrac1{49}-\dfrac1{50}$
$=(1+\dfrac13+..+\dfrac1{49})-(\dfrac12+\dfrac14+...+\dfrac1{50})$
$=(1+\dfrac13+..+\dfrac1{49})+(\dfrac12+\dfrac14+...+\dfrac1{50})-2(\dfrac12+\dfrac14+...+\dfrac1{50})$
$=(1+\dfrac12+\dfrac13+...+\dfrac1{50})-(1+\dfrac12+...+\dfrac1{25})$
$=\dfrac1{26}+\dfrac1{27}+...+\dfrac1{50}$