Giải thích các bước giải:
\(\begin{array}{l}A = {2^1} + {2^2} + {2^3} + {2^4} + ... + {2^{2010}}\\A = \left( {{2^1} + {2^2}} \right) + \left( {{2^3} + {2^4}} \right) + ... + \left( {{2^{2009}} + {2^{2010}}} \right)\\A = 2\left( {1 + 2} \right) + {2^3}\left( {1 + 2} \right) + ... + {2^{2019}}\left( {1 + 2} \right)\\A = 2.3 + {2^3}.3 + ... + {2^{2019}}.3\\A = \left( {2 + {2^3} + ... + {2^{2019}}} \right).3\end{array}\)
Vậy \(A\,\, \vdots \,\,3\).