Đáp án:
`a)`
` x^2 + y^2 + z^2 + 3 \geq 2(x+y+z)`
` => x^2 + y^2 + z^2 + 3 - 2x - 2x - 2z \geq 0`
` => ( x^2 - 2x + 1) + (y^2 - 2y +1) + (z^2 - 2x +1 ) \geq 0`
` => (x-1)^2 + (y-1)^2 + (z-1)^2 \geq 0` (đpcm)
`b)`
` x^2 + y^2+ 2 \geq xy + y + x`
`=> 2x^2 + 2y^2 + 4 \geq 2xy + 2x + 2y`
` => 2x^2 + 2y^2 +4 - 2xy - 2x - 2y \geq 0`
` = (x^2 - 2x + 1) + (y^2 - 2y + 1) + (x^2 - 2xy + y^2) + 2 \geq 0`
` => ( x-1)^2 + (y-1)^2 + (x-y)^2 + 2 \geq 0`
` =>` đpcm