A = 4 + $2^{2}$ + $2^{3}$ + $2^{4}$ + ... + $2^{20}$
A = $2^{2}$ + $2^{2}$ + $2^{3}$ + $2^{4}$ + ... + $2^{20}$
2A = $2^{3}$ + $2^{3}$ + $2^{4}$ + $2^{5}$ + ... + $2^{21}$
2A - A = ($2^{3}$ + $2^{3}$ + $2^{4}$ + $2^{5}$ + ... + $2^{21}$) - ($2^{2}$ + $2^{2}$ + $2^{3}$ + $2^{4}$ + ... + $2^{20}$)
A = $2^{21}$ + $2^{3}$ - $2^{2}$ . 2
A = $2^{21}$ + ($2^{3}$ - $2^{3}$)
A = $2^{21}$
Vậy A là một luỹ thừa của 2