Chứng minh rằng nếu \(a\ge4\) , \(b\ge5\), \(c\ge6\) và \(a^2+b^2+c^2=90\)thì \(a+b+c\ge16\)
Lời giải:
Đặt \((a,b,c)=(m+4,n+5,p+6)\Rightarrow m,n,p\geq 0\)
Điều kiện đb trở thành:
\(a^2+b^2+c^2=90\Leftrightarrow m^2+n^2+p^2+8m+10n+12p=13\)
Vì \(m,n,p\geq 0\) nên:
\(13=m^2+n^2+p^2+8m+10n+12p\leq (m+n+p)^2+12(m+n+p)\)
\(\Leftrightarrow (m+n+p+13)(m+n+p-1)\geq 0\)
\(\Rightarrow m+n+p\geq 1\)
\(\Rightarrow a+b+c=m+n+p+15\geq 16\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(4,5,7)\)
wow khó đó
Xác định hàm số y=ax2+bx+2 biết (P) đi qua B(-1;6) và có tung độ đỉnh là -1/4
tìm các cặp số nguyên (a,b) sao cho
a, \(\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
b, \(\dfrac{a}{4}-\dfrac{1}{2}=\dfrac{3}{b}\)
giúp mk nhé các bạn
phat bieu dinh li hai goc doi dinh
\(\left\{{}\begin{matrix}X+2y=5\\^{ }X^2+2y^2-2xy=5\end{matrix}\right.\)
ngiệm của phương trình căn của x+3 - căn của x-1 =2
tích cac ngiem cua phuong trinh can x+3 - can 2x-8 = can 7-x
CM: \(\dfrac{1}{a\left(b+1\right)}+\dfrac{1}{b\left(c+1\right)}+\dfrac{1}{c\left(a+1\right)}\ge\dfrac{3}{1+abc}\) với a,b,c \(\ge\) 1. Help!
Cho a,b,c là số dương thỏa mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng
a/ \(a^2b+b^2c+c^2a\le3\)
b/ \(\dfrac{ab}{3+c^2}+\dfrac{bc}{3+a^2}+\dfrac{ca}{3+b^2}\le\dfrac{3}{4}\)
cho tam giác ABC. gọi M là trung điểm BC, N là trung điểm BM
Hãy phân tích vecto\(\overrightarrow{AN}\) theo \(\overrightarrow{AB}và\overrightarrow{AC}\)
Cho A(2,1);B(6,-1). Tìm tọa độ:
a, Điểm M trên trục hoành sao cho A,B,M thẳng hàng.
b, Điểm N trên trục tung sao cho A,B,N thẳng hàng
c, Điểm P khác điểm B sao cho A,B,P thẳng hàng và PA= 2\(\sqrt{5}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến