$VT=\sin^4x+\cos^4x$
$=(\sin^2x+\cos^2x)^2-2\sin^2x.\cos^2x$
$= 1-2(\sin x.\cos x)^2$
$=1-2(\dfrac{1}{2}\sin 2x)^2$
$=1-\dfrac{1}{2}sin^22x$
$=1-\dfrac{1}{2}.\dfrac{1-cos 4x}{2}$
$=1-\dfrac{1}{4}(1-\cos4x)$
$= \dfrac{3}{4}+\dfrac{1}{4}\cos 4x$
$=\dfrac{3+\cos 4x}{4}$
$= VP$