Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\sin x + \sin y = 2\sin \dfrac{{x + y}}{2}.\cos \dfrac{{x - y}}{2}\\
\cos x + \cos y = 2\cos \dfrac{{x + y}}{2}.\cos \dfrac{{x - y}}{2}\\
\sin 2x = 2\sin x.\cos x\\
\sin 3A + \sin 3B + \sin 3C\\
= 2.\sin \dfrac{{3A + 3B}}{2}.\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= 2.\sin \left( {180^\circ - \dfrac{{3A + 3B}}{2}} \right).\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= - 2.sin\left( {\dfrac{{3A + 3B}}{2} - 180^\circ } \right).\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= - 2.\cos \left[ {90^\circ - \left( {\dfrac{{3A + 3B}}{2} - 180^\circ } \right)} \right].\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= - 2.\cos \dfrac{{540^\circ - \left( {3A + 3B} \right)}}{2}.\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= - 2.\cos \dfrac{{3\left( {180^\circ - A - B} \right)}}{2}.\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= - 2.\cos \dfrac{{3C}}{2}.\cos \dfrac{{3A - 3B}}{2} + 2\sin \dfrac{{3C}}{2}.\cos \dfrac{{3C}}{2}\\
= 2\cos \dfrac{{3C}}{2}.\left( {\sin \dfrac{{3C}}{2} - \cos \dfrac{{3A - 3B}}{2}} \right)\\
= 2\cos \dfrac{{3C}}{2}.\left( {\sin \left( {180^\circ - \dfrac{{3C}}{2}} \right) - \cos \dfrac{{3A - 3B}}{2}} \right)\\
= 2\cos \dfrac{{3C}}{2}.\left( { - \sin \left( {\dfrac{{3C}}{2} - 180^\circ } \right) - \cos \dfrac{{3A - 3B}}{2}} \right)\\
= 2\cos \dfrac{{3C}}{2}.\left( { - \cos \left( {90^\circ - \left( {\dfrac{{3C}}{2} - 180^\circ } \right)} \right) - \cos \dfrac{{3A - 3B}}{2}} \right)\\
= 2\cos \dfrac{{3C}}{2}.\left( { - \cos \dfrac{{540^\circ - 3C}}{2} - \cos \dfrac{{3A - 3B}}{2}} \right)\\
= - 2\cos \dfrac{{3C}}{2}.\left( {\cos \dfrac{{3A + 3B}}{2} + \cos \dfrac{{3A - 3B}}{2}} \right)\\
= - 2.\cos \dfrac{{3C}}{2}.2.\cos \dfrac{{\dfrac{{3A + 3B}}{2} + \dfrac{{3A - 3B}}{2}}}{2}.\cos \dfrac{{\dfrac{{3A + 3B}}{2} - \dfrac{{3A - 3B}}{2}}}{2}\\
= - 4\cos \dfrac{{3C}}{2}.\cos \dfrac{{3A}}{2}.\cos \dfrac{{ - 3B}}{2}\\
= - 4\cos \dfrac{{3A}}{2}.\cos \dfrac{{3B}}{2}.\cos \dfrac{{3C}}{2}
\end{array}\)