Giải thích các bước giải:
Từ `|x| < 1` và `|y|< 1 => |xy| < 1`
`=> 1 - xy > 0`
Nếu `x ge y` thì hiệu `A = |x-y| - | 1 - xy|`
`A = x - y - (1 - xy)`
`= x - y -1 + xy`
`= x - 1 + xy - y`
`= x -1 + y ( x -1)`
`= (x -1) (y + 1) < 0` Vì `y + 1>0` và `x - 1 <0`
Nếu `x < y` thì hiệu `A = y - x + 1 + xy`
`= y(x+1) - ( x+1)`
`= (y-1)(x+1) < 0` vì `x + 1 > 0` và `y - 1<0`
Suy ra `|x+y| < |1 - xy|`