a.
\(3\equiv1\left(mod2\right)\\ \Rightarrow3^{101}\equiv1\left(mod2\right)\\ \Rightarrow3^{101}-1\equiv0\left(mod2\right)\\ \Rightarrow3^{101}-1⋮2\)
b.
\(5\equiv1\left(mod4\right)\\ \Rightarrow5^{101}\equiv1\left(mod4\right)\\ \Rightarrow5^{101}-1\equiv0\left(mod4\right)\\ \Rightarrow5^{101}-1⋮4\)
c.
\(3\equiv-1\left(mod4\right)\\ \Rightarrow3^{101}\equiv-1\left(mod4\right)\\ \Rightarrow3^{101}+1\equiv0\left(mod\right)4\\ \Rightarrowđpcm\)