Gọi `1 + 1/4 + 1/9 + ... + 1/{n^2}` là $B$
`B=1/4+1/9+...+1/{n^2}`
`B=1/{2^2}+1/{3^2}+...+1/{n^2}`
`B<1+1/4+1/2-1/3+1/3-1/4+1/4-1/5+....+1/{n-1}-1/n`
`B<4/4+1/4+2/4-1/n`
`B<7/4-1/n`
Ta có :
$n∈N$ `<=>1/n>0<=>7/4-1/n<7/4`
Vậy `A<7/4` hay `1 + 1/4 + 1/9 + ... + 1/{n^2}<7/4`