Bài 1 :
\(-x^2+2x-7\)
\(=\left(-x^2+2x-1\right)-6\)
\(=-\left(x^2-2x+1\right)-6\)
\(=-\left(x-1\right)^2-6\)
Do \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6\le-6< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x .
\(-5x^2+20x-49\)
\(=\left(-5x^2+20x-20\right)-29\)
\(=-5\left(x^2-4x+4\right)-29\)
\(=-5\left(x-2\right)^2-29\)
Do \(\left(x-2\right)^2\ge0\Rightarrow-5\left(x-2\right)^2\le0\Rightarrow-5\left(x-2\right)^2-29\le-29< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x
Bài 2 :
\(x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)
\(2x^2+4x+15=2x^2+4x+2+13=2\left(x+1\right)^2+13\ge13\)