Đáp án:
Giải thích các bước giải:
(x2−3xx2+9−6x29(3−x)+x2(3−x)).x2−2x−3x2(x2−3xx2+9−6x29(3−x)+x2(3−x)).x2−2x−3x2
=((x2−3x)(x−3)(x−3)(x2+9)−6x2(3−x)(x2+9)).(x−3)(x+1)x2=((x2−3x)(x−3)(x−3)(x2+9)−6x2(3−x)(x2+9)).(x−3)(x+1)x2
=(x3−6x2+9x(x−3)(x2+9)+6x2(x−3)(x2+9)).(x−3)(x+1)x2=(x3−6x2+9x(x−3)(x2+9)+6x2(x−3)(x2+9)).(x−3)(x+1)x2
=x3−6x2+9x+6x2(x−3)(x2+9).(x−3)(x+1)x2=x3−6x2+9x+6x2(x−3)(x2+9).(x−3)(x+1)x2
=x3+9x(x−3)(x2+9).(x−3)(x+1)x2=x3+9x(x−3)(x2+9).(x−3)(x+1)x2
=x(x2+9)(x−3)(x2+9).(x−3)(x+1)x2=x(x2+9)(x−3)(x2+9).(x−3)(x+1)x2
=x+1x