Đáp án:
Giải thích các bước giải:
Giả sử AB và CD là các dây song song của đường tròn (O).
Kẻ OI ⊥ AB (I ∈ AB) và OK ⊥ CD (K∈CD).
Do AB //CD nên I,O,K thẳng hàng.
Do các tamgiác OAB, OCD là các tam giác cân đỉnh O nên các đường cao kẻ từ đỉnh đồng thời là phân giác.
Vì vậy ta có: Góc ∠O1 = ∠O2, ∠O3 = ∠O4
Giả sử AB nằm ngoài góc COD, ta có: ∠AOC = 1800 – (∠O1 + ∠O3) = 1800 -(∠O2 + ∠O4) = ∠BOD
Suy ra cung AC= cung BD.
Nghĩa là hai cung bị chắn giữa hai dây song song thì bằng nhau.
CHO MIK XIN HAY NHAATS NHA