Giải thích các bước giải:
Ta có:
⊕ 2090 ≡ 193 (mod 271) ⇒ $2090^{n}$ ≡ $193^{n}$ (mod 271)
⊕ 803 ≡ 261 (mod 271) ⇒ $803^{n}$ ≡ $261^{n}$ (mod 271)
⊕ 464≡ 193 (mod 271) ⇒ $464^{n}$ ≡ $193^{n}$ (mod 271)
⊕ $261^{n}$ ≡ $261^{n}$ (mod 271)
⇒ $2090^{n}$ - $803^{n}$ - $464^{n}$ + $261^{n}$ ≡ $193^{n}$ - $261^{n}$ - $193^{n}$ + $261^{n}$ (mod 271) ≡ 0 (mod 271)
⇒ $2090^{n}$ - $803^{n}$ - $464^{n}$ + $261^{n}$ chia hết cho 271 (đpcm)