a) $\cot^2a - \cos^2a$
$= \dfrac{\cos^2a}{\sin^2a} - \cos^2a$
$= \dfrac{\cos^2a - \sin^2a.\cos^2a}{\sin^2a}$
$= \dfrac{\cos^2a(1 - \sin^2a)}{\sin^2a}$
$= \dfrac{\cos^2a.\cos^2a}{\sin^2a}$
$= \cot^2a.\cos^2a$
b) $\dfrac{1 + \cos a}{\sin a} = \dfrac{\sin a}{1 - \cos a}$
$\to (1 + \cos a)(1 - \cos a) = \sin^2a$
$\to 1 - \cos^2a = \sin^2a$
$\to \sin^2a = \sin^2a$ (hiển nhiên)
Vậy $\dfrac{1 + \cos a}{\sin a} = \dfrac{\sin a}{1 - \cos a}$