Đáp án đúng: A
Phương pháp giải:
- Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},\,\,a \ne b \ne c \ne d} \right)\).
- Vì \(\overline {abcd} \,\, \vdots \,\,15\) nên \(\left\{ \begin{array}{l}\overline {abcd} \,\, \vdots \,\,5 \Rightarrow d \in \left\{ {0;5} \right\}\\\overline {abcd} \,\, \vdots \,\,3\end{array} \right.\).
- Ứng với mõi trường hợp của \(d\), tìm các cặp số \(a,\,\,b,\,\,c\) tương ứng.Giải chi tiết:Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},\,\,a \ne b \ne c \ne d} \right)\).
Vì \(\overline {abcd} \,\, \vdots \,\,15\) nên \(\left\{ \begin{array}{l}\overline {abcd} \,\, \vdots \,\,5 \Rightarrow d \in \left\{ {0;5} \right\}\\\overline {abcd} \,\, \vdots \,\,3\end{array} \right.\).
+ TH1: \(d = 0\), số cần tìm có dạng \(\overline {abc0} \) \( \Rightarrow a + b + c\,\, \vdots \,\,3\).
Các bộ ba chữ số chia hết cho 3 là \(\left\{ {1;2;3} \right\};\,\,\left\{ {1;3;5} \right\};\,\,\left\{ {2;3;4} \right\};\,\,\left\{ {3;4;5} \right\}\).
\( \Rightarrow \) có \(4.3! = 24\) cách chọn \(a,\,\,b,\,\,c\).
\( \Rightarrow \) Có 24 số thỏa mãn.
TH2: \(d = 5\), số cần tìm có dạng \(\overline {abc5} \) \( \Rightarrow a + b + c + 5\,\, \vdots \,\,3\) \( \Rightarrow a + b + c\) chia 3 dư 1.
Các bộ ba chữ số chia 3 dư 1 là \(\left\{ {0;1;3} \right\};\,\,\left\{ {1;2;4} \right\};\,\,\left\{ {0;3;4} \right\}\).
\( \Rightarrow \) có \(2.2.2! + 3! = 14\) cách chọn \(a,\,\,b,\,\,c\).
\( \Rightarrow \) Có 14 số thỏa mãn.
Vậy có tất cả \(14 + 14 = 38\) số thỏa mãn.
Chọn A.