Đáp án + Giải thích các bước giải:
`1)`
`a)` `2^5. 8^4`
`= 2^5 . (2^3)^4`
`= 2^5 . 2^12`
`= 2^17`
`b)` `25^6 : 125^3`
`= (5^2)^6 . (5^3)^3`
`= 5^12 . 5^9`
`= 5^21`
`c)` `625^5 : 25^7`
`= (5^4)^5 : (5^2)^7`
`= 5^20 : 5^14`
`= 5^6`
`d)` `12^3 : 3^3`
`= (12:3)^3`
`= 4^3`
`2)` Tìm `x in NN,` biết:
`a)` `2^x - 15 = 17`
`2^x = 17 + 15`
`2^x = 32`
`2^x = 2^5`
`=>` `x = 5`
`b)` `(2x + 1)^3 = 9 . 81`
`(2x + 1)^3 = 729`
`(2x + 1)^3 = 9^3`
`=>` `2x + 1 = 9`
`2x = 9 - 1`
`2x = 8`
` x = 8 : 2`
` x = 4`
`c)` `(2x - 3)^2 - 9 = 16`
` (2x - 3)^2 = 16 + 9`
` (2x - 3)^2 = 25`
` (2x - 3)^2 = 5^2`
`=>` `2x - 3 = 5`
`2x = 5 + 3`
`2x = 8`
`x = 8 : 2`
`x = 4`
`d)` `5^(2x + 3) - 2 . 5^2 = 5^2 . 3`
`5^(2x + 3) - 2 . 25 = 25 . 3`
`5^(2x + 3) - 50 = 75`
`5^(2x + 3) = 75 + 50`
`5^(2x + 3) = 125`
`5^(2x + 3) = 5^3`
`=>` `2x +3 = 3`
`2x = 3 - 3`
`2x = 0 `
`x = 0 : 2`
`x = 0`
`3)` So sánh:
`a)` `27^11` và `81^8`
Ta có: `27^11 = (3^3)^11 = 3^33`
`81^8 = (3^4)^8 = 3^32`
Vì `3^33 > 3^32 => 27^11 > 81^8`
`b)` `625^5` và `125^7`
Ta có: `625^5 = (5^4)^5 = 5^20`
`125^7 = (5^3)^7 = 5^21`
Vì `5^20 < 5^21 => 625^5 < 125^7`
`c)` `5^23` và `6 . 5^22`
Ta có: `6. 5^22 > 5 . 5^22 = 5^23`
`=>` `5^23 < 6 . 5^22`
`d)` `16^9` và `8^24`
Ta có: `16^9 = (2^4)^9 = 2^36`
`8^24 = (2^3)^24 = 2^72`
Vì `2^36 < 2^72 => 16^9 < 8^24`
`4)` Tính tổng:
`a)` `S = 1 + 2 + 2^2 + 2^3 + ... + 2^99 + 2^100`
`=>` `2S = 2 + 2^2 + 2^3 + ... + 2^100 + 2^101`
`=>` `\underbrace{2S-S}_{S} = (2 + 2^2 + 2^3 + ... + 2^100 + 2^101) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^99 + 2^100) `
`=>` `S = 2^101 - 1`
`b)` `S = 1 + 3 + 3^2 + 3^3 + ... + 3^99 + 3^100`
`=>` `3S = 3 + 3^2 + 3^3 + ... + 3^100 + 3^101`
`=>` `\underbrace{3S-S}_{2S} = (3 + 3^2 + 3^3 + ... + 3^100 + 3^101) - ( 1 + 3 + 3^2 + 3^3 + ... + 3^99 + 3^100) `
`=>` `2S = 3^101 - 1`
`=>` `S = (3^101 - 1)/2`
`5)` Tìm số tự nhiên `n,` biết:
`a)` `9 < 3^n < 81`
`=>` `3^2 < 3^n < 3^4`
`=>` `n = 3`
`b)` `25 ≤ 5^n ≤ 125`
`=>` `5^2 ≤ 5^n ≤ 5^3`
`=>` `n in {2; 3}`
CHÚC BẠN HỌC TỐT!