Theo bài ra ta có: $\frac{1}{x}+\frac{1}{y}=\frac{1}{2014}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{2014}$
Có: $P=\frac{\sqrt{x+y}}{\sqrt{x-2014}+\sqrt{y-2014}}=\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}=\frac{\sqrt{x+y}}{\sqrt{\frac{x^2}{x+y}}+\sqrt{\frac{y^2}{x+y}}}$
=> $P^2=\frac{x+y}{\frac{x^2+y^2}{x+y}+2\sqrt{\frac{x^2y^2}{(x+y)^2}}}=\frac{x+y}{\frac{(x+y)^2}{x+y}}=\frac{x+y}{x+y}=1$
Do P>0 nên P=1.
Bạn thử kiểm tra xem.