Giải thích các bước giải:
d.$\dfrac{3}{x^2+2xy+y^2}+\dfrac{4}{2xy-x^2-y^2}+\dfrac{5}{x^2-y^2}$
$=\dfrac{3}{(x+y)^2}-\dfrac{4}{(x-y)^2}+\dfrac{5}{(x-y)(x+y)}$
$=\dfrac{3(x-y)^2}{(x+y)^2(x-y)^2}-\dfrac{4(x+y)^2}{(x-y)^2(x+y)^2}+\dfrac{5(x-y)(x+y)}{(x-y)^2(x+y)^2}$
$=\dfrac{3(x-y)^2-4(x+y)^2+5(x-y)(x+y)}{(x+y)^2(x-y)^2}$
$=\dfrac{3(x^2-2xy+y^2)-4(x^2+2xy+y^2)+5(x^2-y^2)}{(x+y)^2(x-y)^2}$
$=\dfrac{4x^2-14xy-6y^2}{(x+y)^2(x-y)^2}$