$\cos6x+\cos12x+3(\cos8x+\cos10x)=0$
$\Leftrightarrow 2\cos9x.\cos3x +6\cos9x.\cos x=0$
$\Leftrightarrow 2\cos9x(\cos3x+3\cos x)=0$
+ TH1: $\cos9x=0\Leftrightarrow x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}$
+ TH2: $\cos3x+3\cos x=0$
$\Leftrightarrow \cos(x+2x)+3\cos x=0$
$\Leftrightarrow \cos x\cos2x-\sin x\sin2x+3\cos x=0$
$\Leftrightarrow \cos x(2\cos^2x-1)-2\sin^2x\cos x+3\cos x=0$
$\Leftrightarrow 2\cos^3x-\cos x-2\cos x(1-\cos^2x)+3\cos x=0$
$\Leftrightarrow 4\cos^3x=0$
$\Leftrightarrow \cos x=0$
$\Leftrightarrow x=\dfrac{\pi}{2}+k\pi$
Vậy $x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}$