Giải thích các bước giải:
`sqrt(2x^2-3x+1)+sqrt(x^2+x-2)=sqrt(3x^2-4x+1)`
`=>2x^2-3x+1+x^2+x-2+2sqrt((2x^2-3x+1)(x^2+x-2))=3x^2-4x+1`
`=>3x^2-2x-1-3x^2+4x-1+2sqrt((x-1)(2x-1)(x-1)(x+2))=0`
`=>2x-2+2(x-1)sqrt((2x-1)(x+2))=0`
`=>2(x-1)+2(x-1)sqrt((2x-1)(x+2))=0`
`=>2(x-1)(sqrt((2x-1)(x+2))+1)=0`
Mà `sqrt((2x-1)(x+2))>=0AAx`
`=>sqrt((2x-1)(x+2))+1>0`
`=>2(x-1)=0`
`=>x-1=0`
`=>x=1`