\(\dfrac{3}{{{x^2} - 5x + 6}};\) \(\dfrac{{2x}}{{3{x^2} - 2x - 8}}\)
A.\(\dfrac{3\left ( 3x - 4 \right )}{\left ( x + 2 \right )\left ( x + 3 \right )\left ( 3x - 4 \right )}\,;\,\,\dfrac{2x\left ( x + 3 \right )}{\left ( x + 2 \right )\left ( x + 3 \right )\left ( 3x - 4 \right )}\)
B.\(\dfrac{3\left ( 3x - 4 \right )}{\left ( x + 2 \right )\left ( x + 3 \right )\left ( 3x - 4 \right )}\,;\,\,\dfrac{2x\left ( x + 2 \right )}{\left ( x + 2 \right )\left ( x + 3 \right )\left ( 3x - 4 \right )}\)
C.\(\dfrac{3\left ( 3x + 4 \right )}{\left ( x - 2 \right )\left ( x - 3 \right )\left ( 3x + 4 \right )}\,;\,\,\dfrac{2x\left ( x - 3 \right )}{\left ( x - 2 \right )\left ( x - 3 \right )\left ( 3x + 4 \right )}\)
D.\(\dfrac{3\left ( 3x + 4 \right )}{\left ( x - 2 \right )\left ( x - 3 \right )\left ( 3x + 4 \right )}\,;\,\,\dfrac{2x\left ( x - 2 \right )}{\left ( x - 2 \right )\left ( x - 3 \right )\left ( 3x + 4 \right )}\)