Đáp án `+` Giải thích các bước giải `!`
`a)`
`2(x-3) = x^2-9`
`<=> 2x-6-x^2+9 = 0`
`<=> -x^2+2x+3 = 0`
`<=> -x^2+3x-x+3 = 0`
`<=> (-x^2+3x)-(x-3) = 0`
`<=> -x(x-3)-(x-3) = 0`
`<=> (-x-1)(x-3) = 0`
`⇔` \(\left[ \begin{array}{l}-x-1=0\\x-3=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}-x=1\\x=3\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-1\\x=3\end{array} \right.\)
Vậy `S= {-1; 3}`
`b)`
`(2-3x)^2-4x^2 = 0`
`<=> (2-3x)-(2x)^2 = 0`
`<=> (2-3x-2x)(2-3x+2x) = 0`
`<=> (2-5x)(2-x) = 0`
`⇔` \(\left[ \begin{array}{l}2-5x=0\\2-x=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}5x=2\\x=2\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\dfrac{2}{5}\\x=2\end{array} \right.\)
Vậy `S= {2/5; 2}`
`c)`
`(x^2-4)^2-(x-2)(x+2) = 0`
`<=> x^4-8x^2+16-x^2+4 = 0`
`<=> x^4-9x^2+20 = 0`
`<=> x^4-5x^2-4x^2+20 = 0`
`<=> (x^4-5x^2)-(4x^2-20) = 0`
`<=> x^2(x^2-5)-4(x^2-5) = 0`
`<=> (x^2-4)(x^2-5) = 0`
`⇔` \(\left[ \begin{array}{l}x^2-4=0\\x^2-5=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x^2=4\\x^2=5\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2\\x=-2\\x=\sqrt{5}\\x=-\sqrt{5}\end{array} \right.\)
Vậy `S= {+-2; +-\sqrt{5}}`