Đáp án:
\(\dfrac{{\sqrt x }}{{x + \sqrt x + 1}}\)
Giải thích các bước giải:
Câu 1.2
\(\begin{array}{l}
A = \dfrac{{x + 2 + \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{x + 2 + x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{2x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
A = A - B = \dfrac{{2x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x - 1}}\\
= \dfrac{{2x + 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}
\end{array}\)