a) Ta có ΔΔABD cân (tính chất cạnh hình thoi) có góc A = 600
=> ABD đều
=> đường cao BH đồng thời là trung tuyến
=> AH = DH
Theo giả thiết: BH = HC
=> ABCD là hình bình hành
Lại có AE ⊥⊥ AD (gt)
Vậy ABDE là hình thoi
b) Vì ABCD là hình thoi nên AB // CD (gt)
Ta có ABDE là hình thoi (cmt) nên AB // ED
=> C, D, E thẳng hàng (theo tiên đề Ơclit)
c) Dễ thấy ABCE là hình thang cân vì có:
AB // CE và AE = BC (= AB)
=> các đường chéo AC và BE bằng nhau
Giải thích các bước giải: