Đáp án + Giải thích các bước giải:
`c//(x-1)(x+2)(x-3)=0`
`⇔` \(\left[ \begin{array}{l}x-1=0\\x+2=0\\x-3=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=1\\x=-2\\x=3\end{array} \right.\)
Vậy `S={1;-2;3}`
`d//(7x-2)(7-2x)(x^{2}+1)=0`
`⇔` \(\left[ \begin{array}{l}7x-2=0\\7-2x=0\\x^2+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}7x=2\\2x=7\\x^2=-1\text{ ( Vô Nghiệm )}\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\frac{2}{7}\\x=\frac{7}{2}\end{array} \right.\)
Vậy `S={\frac{2}{7};\frac{7}{2}}`
`a//(4x-1)(x-3)-(x-3)(4x+2)=0`
`⇔(x-3)(4x-1-4x-2)=0`
`⇔-3(x-3)=0`
`⇔x-3=0`
`⇔x=3`
Vậy `S={3}`
`b//(x+6)(3x-1)+x^{2}-36=0`
`⇔(x+6)(3x-1)+(x-6)(x+6)=0`
`⇔(x+6)(3x-1+x-6)=0`
`⇔(x+6)(4x-7)=0`
`⇔` \(\left[ \begin{array}{l}x+6=0\\4x-7=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-6\\x=\frac{7}{4}\end{array} \right.\)
Vậy `S={-6;\frac{7}{4}}`