Đáp án:
Giải thích các bước giải:
`\sqrt{2} + 1/(\sqrt{5+2\sqrt{6}}) + 2/(\sqrt{8+2\sqrt{15}}`
`= \sqrt{2} + 1/(\sqrt{(\sqrt{2}+\sqrt{3})^2}) + 2/(\sqrt{(\sqrt{3}+\sqrt{5})^2})`
`= \sqrt{2} + 1/(\sqrt{2}+\sqrt{3}) + 2/(\sqrt{3}+\sqrt{5})`
`= \sqrt{2} + (1(\sqrt{2}-\sqrt{3}))/((\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})) + (2(\sqrt{3}-\sqrt{5}))/((\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}))`
`= \sqrt{2} + (\sqrt{2}-\sqrt{3})/-1 + (2(\sqrt{3}-\sqrt{5}))/-2`
`= \sqrt{2} - (\sqrt{2} - \sqrt{3}) - (\sqrt{3} - \sqrt{5})`
`= \sqrt{2} - \sqrt{2} + \sqrt{3} - \sqrt{3} + \sqrt{5}`
`= \sqrt{5}`