Đặt $A=1+3+3^2 +...+ 3^{100}$
$⇒3A=3+3^2+3^3+...+3^{101}$
$⇒3A-A=(3+3^2+3^3+...+3^{101})-(1+3+3^2 +...+ 3^{100})$
$⇒2A=3^{101}-1$
$⇒A=\frac{3^{101}-1}{2}$
Vậy $A=\frac{3^{101}-1}{2}$
Đặt $B=4+ 4^2 + 4^3 + ... + 4^n$
$⇒4B=4^2+4^3+4^4+4^{n+1}$
$⇒4B-B=(4^2+4^3+4^4+4^{n+1})-(4+ 4^2 + 4^3 + ... + 4^n)$
$⇒3B=4^{n+1}-4$
$⇒B=\frac{4.(4^{n}-1)}{3}$
Vậy $B=\frac{4.(4^{n}-1)}{3}$.