$\begin{array}{l}
g)\,\,\frac{{2\sqrt 8 - \sqrt {12} }}{{\sqrt {18} - \sqrt {48} }} - \frac{{\sqrt 5 + \sqrt {27} }}{{\sqrt {30} + \sqrt {162} }} = \frac{{2.2\sqrt 2 - 2\sqrt 3 }}{{3\sqrt 2 - 4\sqrt 3 }} - \frac{{\sqrt 5 + 3\sqrt 3 }}{{\sqrt {6.5} + 9\sqrt 2 }}\\
= \frac{{4\sqrt 2 - 2\sqrt 3 }}{{\sqrt 6 \left( {\sqrt 3 - 2\sqrt 2 } \right)}} - \frac{{\sqrt 5 + 3\sqrt 3 }}{{\sqrt 6 \left( {\sqrt 5 + 3\sqrt 3 } \right)}} = \frac{{2\left( {2\sqrt 2 - \sqrt 3 } \right)}}{{\sqrt 6 \left( {\sqrt 3 - 2\sqrt 2 } \right)}} - \frac{1}{{\sqrt 6 }}\\
= \frac{{ - 2}}{{\sqrt 6 }} - \frac{1}{{\sqrt 6 }} = - \frac{3}{{\sqrt 6 }} = \frac{{ - 3\sqrt 6 }}{6} = - \frac{{\sqrt 6 }}{2}.\\
= \\
h)\,\,\frac{{3\sqrt 5 - 5\sqrt 3 }}{{\sqrt 3 - \sqrt 5 }} + \frac{{2\sqrt 5 - 5\sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} = \frac{{\sqrt {15} \left( {\sqrt 3 - \sqrt 5 } \right)}}{{\sqrt 3 - \sqrt 5 }} + \frac{{\sqrt {10} \left( {\sqrt 2 - \sqrt 5 } \right)}}{{\sqrt 5 - \sqrt 2 }}\\
= \sqrt {15} + \sqrt {10} = \sqrt 5 \left( {\sqrt 3 + \sqrt 2 } \right).\\
i)\,\,\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}} - \frac{{5 - 2\sqrt 5 }}{{2\sqrt 5 - 4}} = \frac{{\sqrt 5 \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 - 1}} - \frac{{\sqrt 5 \left( {\sqrt 5 - 2} \right)}}{{2\left( {\sqrt 5 - 2} \right)}}\\
= \sqrt 5 - \frac{{\sqrt 5 }}{2} = \frac{{\sqrt 5 }}{2}.
\end{array}$