Tìm các số nguyên \(x,\,\,y\) thỏa mãn: \(\left| x \right| + {y^2} = 2\)
A.\(\left( {x;y} \right) \in \left\{ {\left( {2;\,\,0} \right);\left( { - 2;\,\,0} \right)\left( {1;\,\,1} \right);\,\,\left( { - 1; - 1} \right);\,\,\left( { - 2;\,\, - 2} \right);\,\,\left( {2;\,\,2} \right)} \right\}.\)
B.\(\left( {x;y} \right) \in \left\{ {\left( {2;\,\,0} \right);\left( { - 2;\,\,0} \right)\left( {1;\,\,1} \right);\,\,\left( { - 1; - 1} \right);\,\,\left( { - 1;\,\,1} \right);\,\,\left( {1; - 1} \right)} \right\}.\)
C.\(\left( {x;y} \right) \in \left\{ {\left( {1;\,\,0} \right);\left( { - 1;\,\,0} \right)\left( {1;\,\,1} \right);\,\,\left( { - 1; - 1} \right);\,\,\left( { - 1;\,\,1} \right);\,\,\left( {1; - 1} \right)} \right\}.\)
D.\(\left( {x;y} \right) \in \left\{ {\left( {1;\,\,0} \right);\left( { - 1;\,\,0} \right)\left( {1;\,\,1} \right);\,\,\left( { - 1; - 1} \right);\,\,\left( { - 2;\,\,1} \right);\,\,\left( {2; - 1} \right)} \right\}.\)