Đơn giản biểu thức sau:
\(G=Cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
.
G = \(cos\left(a+\pi-6\text{}\text{}\pi\right)+sin\left(-2\pi+\dfrac{\pi}{2}+a\right)-tan\left(\dfrac{\pi}{2}+a\right)\cdot cot\left(\pi+\dfrac{\pi}{2}-a\right)\)
= \(cos\left(a+\pi\right)+sin\left(\dfrac{\pi}{2}+a\right)-tan\left(\dfrac{\pi}{2}+a\right)\cdot cot\left(\dfrac{\pi}{2}-a\right)\)
= \(-cosa+cosa-\left(-cota\cdot tana\right)=1\)
Cho a,b,c >0.CMR:
\(\dfrac{1}{2\cdot a+b}+\dfrac{1}{2\cdot b+c}+\dfrac{1}{2\cdot c+a}>=\dfrac{3}{a+b+c}\)
cho hàm số $y=x^2-2mx-2m(1)$
tìm m để giá trị nhỏ nhất của $y=-3$
Cho các số thực a,,b,c không âm khác 1 thỏa mãn a+b+c=1 Tìm Min
P=\(\frac{1}{a+bc}+\frac{1}{b+ca}+(a+b)(4+5c)\)
\(\sqrt{7-x^2+x\sqrt{x}+5}=\sqrt{3-2x-x^2}\)
bài này làm kiểu gì vậy
tìm m để x+y đạt giá trị lớn nhất sao cho \(\left\{{}\begin{matrix}x+m^2y\le m\\y+m^2x\le m\end{matrix}\right.\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\dfrac{1}{ab+a+2}+\dfrac{1}{bc+b+2}+\dfrac{1}{ca+c+2}\le\dfrac{3}{4}\)
hj các man giúp heo câu này na
tìm a,b,c biết \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)và a-b =15
\(\left(\dfrac{2}{5}\right)^{X+1}-\left(\dfrac{2}{5}\right)^X=\left(\dfrac{-12}{125}\right)\)
tính(hợp lí nếu có thể) 28.69+4.18.7+2.14.13
cho tam giac abc can tai a cos goc a <90 do, duong cao ce ,bd cat nhau tai h
cmr a)tam giac abd=tam giac ace
b. ah laf trung truc cua bc
c.bc//de
d.ah cắt bc tại i trên tia đối ih lấy điểm k sao cho hi=kì.cm tam giác ack vuông
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến