$ t = \sin x + \cos x\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\\ \Rightarrow {t^2} = 1 + 2\sin x\cos x = 1 + \sin 2x \Rightarrow {t^2} - 1 = \sin 2x\\ \sin 2x + 3\cos x + 3\sin x + 3 = 0\\ \Leftrightarrow {t^2} - 1 + 3t + 3 = 0 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left( {t + 1} \right)\left( {t + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} t = - 1\\ t = - 2(L) \end{array} \right. \Rightarrow t = - 1 \Rightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = - 1\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = - \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = - \dfrac{\pi }{4} + k2\pi \\ x + \dfrac{\pi }{4} = \pi + \dfrac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \dfrac{\pi }{2} + k2\pi \\ x = \pi + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\\ d) - \sin 2x - 3\sin x + 3\cos x + 3 = 0\\ \Leftrightarrow 3\sin x - 3\cos x + \sin 2x - 3 = 0\\ t = \sin x - \cos x\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\\ \Rightarrow {t^2} = 1 - 2\sin x\cos x = 1 - \sin 2x \Rightarrow \sin 2x = 1 - {t^2}\\ PT \Leftrightarrow 3t + 1 - {t^2} - 3 = 0 \Leftrightarrow {t^2} - 3t + 2 = 0 \Leftrightarrow \left( {t - 1} \right)\left( {t - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} t = 1\\ t = 2(L) \end{array} \right. \Rightarrow \sin x - \cos x = 1 \Rightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right) = 1\\ \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{{\sqrt 2 }}{2} \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi \\ x - \dfrac{\pi }{4} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k2\pi \\ x = \pi + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) $