`E =1/(1*3)+1/(3*5)+1/(5*7)+...+1/(19*21)`
`⇔2E =2/(1*3)+2/(3*5)+2/(5*7)+...+2/(19*21)`
`=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/19-1/21`
`=1-1/21=20/21`
`⇒E = 10/21`
`B=1/(9*10)-1/(8*9)-1/(7*8)-...-1/(1*2)`
`=-1/(1*2)-1/(2*3)-1/(3*4)-...-1/(8*9)+1/(9*10)`
`=-(1/(1*2)+1/(2*3)+1/(3*4)+...+1/(8*9))+1/(9*10)`
`=1/(9*10)-(1/(1*2)+1/(2*3)+1/(3*4)+...+1/(8*9))`
`=1/(9*10)-(1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9)`
`=1/(9*10)-(1-1/9)=1/(9*10)-8/9`
`=1/90-8/9=1/90-80/90=-79/90`