Đáp án đúng: A
Phương pháp giải:
+ Công thức tính lực ma sát: \({F_{ms}} = \mu N\)
+ Phương trình định luật II Niuton: \(\sum {\overrightarrow F } = m.\overrightarrow a \,\,\,\,\left( * \right)\)
Chiếu (*) lên Ox và Oy.
+ Định luật I Niu - tơn: Nếu không chịu tác dụng của lực nào hoặc chịu tác dụng của các lực có hợp lực bằng không, thì vật đang đứng yên sẽ tiếp tục đứng yên, đang chuyển động sẽ tiếp tục chuyển động thẳng đều.Giải chi tiết:
Chọn hệ trục tọa độ như hình vẽ:
Áp dụng định luật II Newton:
\(\overrightarrow {F_{ms}} + \overrightarrow P + \overrightarrow N + \overrightarrow F = m.\overrightarrow a \Leftrightarrow \overrightarrow {F_{ms}} + \overrightarrow P + \overrightarrow N + \overrightarrow F_1 + \overrightarrow F_2 = m.\overrightarrow a\,\,\,\left ( * \right )\)
Chiếu phương trình (*) lên Ox, Oy, ta có:
\(\left\{ \begin{array}{l}N = P_2 = P.\cos \alpha = mg\cos \alpha \\F - F_{ms} - P_1 = 0\Leftrightarrow F - \mu N - mg\sin \alpha = 0 \end{array} \right.\)
(do xe chuyển động thẳng đều)
\(\begin{array}{l} \Rightarrow F = \mu N + mg\sin \alpha = \mu mg\cos \alpha + mg\sin \alpha \\\,\,\,\,\,\,\,\,\,\,\, = mg.\left( {\mu \cos \alpha + \sin \alpha } \right)\\\,\,\,\,\,\,\,\,\,\,\, = {10^3}.10.\left( {0,01.\dfrac{{\sqrt {{{200}^2} - {{10}^2}} }}{{200}} + \dfrac{1}{{20}}} \right) = 600N\end{array}\)
Chọn A.