Đáp án:
$\begin{array}{l}
a)x = 2\left( {tmdk} \right)\\
A = \dfrac{{\sqrt x + 5}}{{\sqrt x }} = \dfrac{{\sqrt 2 + 5}}{{\sqrt 2 }} = \dfrac{{2 + 5\sqrt 2 }}{2}\\
b)\\
A = 2\\
\Leftrightarrow \dfrac{{\sqrt x + 5}}{{\sqrt x }} = 2\\
\Leftrightarrow \sqrt x + 5 = 2\sqrt x \\
\Leftrightarrow \sqrt x = 5\\
\Leftrightarrow x = 25\left( {tmdk} \right)\\
Vay\,x = 25\\
c)A > 1\\
\Leftrightarrow \dfrac{{\sqrt x + 5}}{{\sqrt x }} - 1 > 0\\
\Leftrightarrow \dfrac{{\sqrt x + 5 - \sqrt x }}{{\sqrt x }} > 0\\
\Leftrightarrow \dfrac{5}{{\sqrt x }} > 0\\
\Leftrightarrow \sqrt x > 0\\
Vay\,x > 0\\
d)Dkxd:x > 0;x \ne 1\\
B = \left( {\dfrac{{\sqrt x }}{{\sqrt x - 1}} - \dfrac{1}{{x - \sqrt x }}} \right):\dfrac{1}{{\sqrt x - 1}}\\
= \dfrac{{\sqrt x .\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\left( {\sqrt x - 1} \right)\\
= \dfrac{{x - 1}}{{\sqrt x }}\\
e)B > 0\\
\Leftrightarrow \dfrac{{x - 1}}{{\sqrt x }} > 0\\
\Leftrightarrow x - 1 > 0\\
\Leftrightarrow x > 1\\
Vay\,x > 1\\
f)A + B\\
= \dfrac{{\sqrt x + 5}}{{\sqrt x }} + \dfrac{{x - 1}}{{\sqrt x }}\\
= \dfrac{{x + \sqrt x + 4}}{{\sqrt x }}\\
= \sqrt x + 1 + \dfrac{4}{{\sqrt x }}\\
Theo\,Co - si:\\
\sqrt x + \dfrac{4}{{\sqrt x }} \ge 2\sqrt {\sqrt x .\dfrac{4}{{\sqrt x }}} = 4\\
\Leftrightarrow \sqrt x + 1 + \dfrac{4}{{\sqrt x }} \ge 5\\
\Leftrightarrow A.B \ge 5\\
\Leftrightarrow GTNN:A.B = 5\,khi:x = 4
\end{array}$